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Abstract
In recent years there has been a growing interest in connections between the
statistical properties of number theoretical L-functions and random matrix
theory. We review the history of these connections, some of the major
achievements and a number of applications.

PACS numbers: 02.10.De, 02.10.Yn

1. The history in brief

Number theory and random matrix theory met, by chance, over a cup of tea in the common
room at the Institute for Advanced Study in Princeton in the early 1970s. H L Montgomery,
then a graduate student, had shown his latest work to F J Dyson. His main conclusion was a
conjecture for the two-point correlation function of the zeros of the Riemann zeta function,
which he had managed to prove for a limited range of correlations [57]. Dyson recognized
this to be the same as the two-point correlation function, which he had calculated a decade
earlier, for the eigenvalues of matrices drawn at random from U(N) (the group of N × N

unitary matrices) uniformly with respect to Haar measure [30].
The Riemann zeta function is extremely important in number theory because it allows

for analytical techniques to be applied to the study of the distribution of prime numbers, and
Montgomery’s conjecture plays a central role in the theory of this distribution.

Although the full proof of Montgomery’s conjecture has still escaped completion,
Odlyzko’s numerical computations have provided very strong evidence in support of it [59].
Working on the powerful computers of AT&T, in the 1980s Odlyzko calculated batches of
the Riemann zeros high up on the critical line where the Riemann hypothesis places them,
and computed numerically the two-point correlation function, as well as many other statistics
of the zeros. He also computed the distribution of the values of the zeta function. His
numerics provide very convincing evidence that, as predicted by Montgomery’s conjecture,
the two-point correlation function of the Riemann zeros converges to the random matrix result
of Dyson as zeros higher and higher on the critical line are considered. Odlyzko’s numerical
work continues today and he is currently working at the dizzying height of the 1022nd Riemann
zero.
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In the 1980s the Riemann zeta function also took on a new life in mathematical and
theoretical physics when it became a tool in the field of quantum chaos. The eigenvalues of
complex quantum systems (e.g., nuclei [4, 18, 35] and disordered mesoscopic systems [31])
and systems showing chaotic behaviour in the classical limit [12, 16, 17] display the statistics
of the three standard ensembles of Hermitian matrices, the Gaussian unitary ensemble (GUE),
the Gaussian orthogonal ensemble (GOE) and the Gaussian symplectic ensemble (GSE), or
equivalently (in the appropriate limit) the three corresponding standard ensembles of unitary
matrices: the CUE, COE and CSE. (Here the ‘C’ stands for ‘circular’.) However, while the
eigenvalue statistics show certain behaviour which is easily identified and predicted by random
matrices, there are further characteristics which are system-specific and are connected to the
periodic orbits of the system under consideration [6]. These relate to the approach to the
random matrix limit as h̄ → 0. It was realized by Berry [7] that very similar contributions
result from the primes and behave in the same way with respect to the statistics of the Riemann
zeros as do the periodic orbits to the statistics of the eigenvalues. In this case, the primes
describe the approach to the random-matrix limit as the height up the critical line increases.

This launched an era of study of the Riemann zeta function in the field of quantum chaos
[2, 6, 8–11, 47]. Most of the results are reviewed in [11, 48]. In essence, the connection
between the Riemann zeta function and the prime numbers was being used to point the way
through more complicated periodic orbit calculations; and in return the familiarity which arose
with the zeta function enabled physicists to contribute insights from physics to its study. In
particular, it resulted in a return to the question of the statistics of the Riemann zeros when
Bogomolny and Keating [13, 15] in 1995 and 1996 showed, subject to certain conjectures of
Hardy and Littlewood concerning the distribution of primes, that not just the two-point, but
the general n-point statistics of the Riemann zeros are the same as those of the eigenvalues of
random unitary matrices in the limit as one looks at zeros infinitely high up the critical line.

At the same time, first Hejhal [37] with the three-point case, then Rudnick and Sarnak
[61] generalized Montgomery’s theorem by proving for a limited range of correlations, as in
the two-point statistic, that the n-point correlations of the Riemann zeros high on the critical
line coincide with the corresponding random unitary matrix statistics.

At the end of the 1990s, two developments occurred which illustrate how deeply random
matrix theory is intertwined with the Riemann zeta function. Far from there being some
accidental similarity between the zeros of this one function and the eigenvalues of random
matrices, it became apparent that this connection was far more general. The zeta function
is but one example of a broader class of functions known as L-functions. These all satisfy
generalizations of the Riemann hypothesis. For any individual L-function, it is believed that
the zeros high up on the critical line are distributed like the eigenvalues of random unitary
matrices, that is, exactly as in the case of the Riemann zeta function [57, 61]. More interesting,
however, is the fact that it has been conjectured by Katz and Sarnak [45, 46] that averages
over various families of L-functions, with the height up the critical line of each one fixed,
are described not only by averages over the unitary group U(N), but by averages over other
classical compact groups, for example the orthogonal group O(N) or the unitary symplectic
group USp(2N), depending upon the family in question. The eigenvalue statistics of these
groups have also been found to occur in disordered superconducting systems [1].

The second of the two significant recent developments was the discovery that calculations
purely within random matrix theory can suggest answers to important questions that number
theorists have been unable to make progress on using standard techniques. In [51, 52], Keating
and Snaith showed that by studying the value distribution and moments of the characteristic
polynomial of a random matrix, one can make predictions about the value distribution and
moments of the Riemann zeta function and other L-functions. The reason for this is clear: the
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characteristic polynomial of a random matrix has zeros (the eigenvalues of the matrix) which,
conjecturally, show the same statistical behaviour of the zeros of L-functions. Thus random
matrix theory can be put to very practical use in the study of L-functions.

Our aim in the following sections is to expand further on the developments outlined above.
Specifically, we will concentrate on those aspects not covered in previous reviews [11, 48].

2. Pair correlations

We begin with some basic facts about the Riemann zeta function.
The Riemann zeta function is defined by

ζ(s) =
∞∑

n=1

1

ns
=

∏
p

(
1 − 1

ps

)−1

(1)

for Re s > 1, where p labels the primes, and then by analytic continuation to the rest of the
complex plane. It has a pole at s = 1, zeros at s = −2,−4,−6, . . . (the trivial zeros) and
infinitely many zeros, called the non-trivial zeros, in the critical strip 0 < Re s < 1. The
Riemann hypothesis states that all of the non-trivial zeros lie on the critical line Re s = 1/2;
that is, ζ(1/2 + it) = 0 has non-trivial solutions only when t = tn ∈ R [63]. This is known
to be true for at least 40% of the non-trivial zeros [20], for the first 1.5 × 109 + 1 of them
[53], and for batches lying much higher [59]. (A distributed computing project claimed as of
31 July 2002 that the first 50, 631, 912, 399 non-trivial zeros lie on the line! [65]) The zeta
function satisfies a functional equation:

ζ(s) = πs− 1
2
�
(

1
2 − 1

2 s
)

�
(

1
2 s
) ζ(1 − s). (2)

In the following, for ease of presentation, we will assume the Riemann hypothesis to be
true, although this is not strictly necessary.

The mean density of the non-trivial zeros increases logarithmically with height t up the
critical line. Specifically, defining unfolded zeros by

wn = tn
1

2π
log

tn

2π
(3)

it is known that

lim
W→∞

1

W
#{wn < W } = 1. (4)

The question then arises as to the statistical distribution of the unfolded zeros: are they equally
spaced, with unit spacing between neighbours, randomly distributed with unit mean spacing,
or do they have some other limiting distribution? Statistics such as the two-point correlation
function contain information about this distribution. For example, let

Fζ (α, β; W) = 1

W
#{wn,wm ∈ [0,W ] : α � wn − wm < β} (5)

that is, Fζ measures correlations between pairs of unfolded zeros wn ∈ [0,W ]. The question
is, first, does a limit distribution

Fζ (α, β) = lim
W→∞

Fζ (α, β; W) (6)

exist, and second, if so, what can one say about it?
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In 1973, Montgomery provided at least part of the answer to this. The two-point correlation
function R2,ζ (x) of the Riemann zeros is related to Fζ (α, β) by

Fζ (α, β) =
∫ β

α

(R2,ζ (x) + δ(x)) dx. (7)

Using more general test functions, we can write

R2,ζ (f,W) = 1

W

∑
j �=k

wj ,wk�W

f (wj − wk)

=
∫ ∞

−∞
f (x)

1

W

∑
j �=k

wj ,wk�W

δ(x − wj + wk) dx. (8)

Montgomery’s theorem is

Theorem 1 (Montgomery [57]). For test functions f (x) such that

f̂ (τ ) =
∫ ∞

−∞
f (x) e2π ixτ dx

has support in (−1, 1), the following limit exists:

lim
W→∞

R2,ζ (f,W) =
∫ ∞

−∞
f (x)R2(x) dx

with

R2(x) = 1 −
(

sin(πx)

πx

)2

.

Based on this result, Montgomery further conjectured that theorem 1 is true for f̂ (τ ) of
unrestricted support. This we write as

Conjecture 1 (Montgomery [57]). If, for Fζ (α, β) defined as in (6), we write

Fζ (α, β) =
∫ β

α

(R2,ζ (x) + δ(x)) dx

then

R2,ζ (x) = R2(x)

with R2(x) as in theorem 1.

We are now in a position to explain the connection with random matrices. Random matrix
theory was initiated by Eugene Wigner in the 1950s to describe the statistical distribution of
nuclear energy levels. It was later developed by Dyson, Mehta, Gaudin and others in the
1960s into a rigorous area of mathematical physics. For a detailed introduction see [54]. One
important result—the two-point correlation function for the eigenvalues of unitary matrices—
was proved by Dyson in 1963. Let A be an N × N unitary matrix; that is, A ∈ U(N). Denote
the eigenvalues of A by exp(iθn), where 1 � n � N and θn ∈ R (this follows from unitarity).
Clearly the eigenphases θn have mean density N/2π , so the unfolded eigenphases

φn = θn

N

2π
(9)
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have unit mean density (i.e. φn ∈ [0, N)). Next let us define, by analogy with (5),

F(α, β; A,N) = 1

N
#{φn, φm : α � φn − φm < β}. (10)

Now, the unitary group U(N) comes with a natural invariant measure—Haar measure—which
we will denote by dA, and so one may compute the average over A of this function, with A

taken uniformly with respect to Haar measure:

FU(α, β; N) =
∫

U(N)

F (α, β; A,N) dA. (11)

Dyson’s theorem is then

Theorem 2 (Dyson [30]). The limit distribution

FU(α, β) = lim
N→∞

FU(α, β; N)

(defined as in (10) and (11)) exists and takes the form

FU(α, β) =
∫ β

α

[R2,U (x) + δ(x)] dx (12)

where δ(x) is Dirac’s δ-function and

R2,U (x) = R2(x) ≡ 1 −
(

sin(πx)

πx

)2

.

The integrand in (12) may be thought of as the two-point correlation function for the
eigenphases of a random unitary matrix, unfolded to have unit mean spacing. The fact that it
is a non-trivial function of correlation distance x means that eigenphases are correlated in a
non-trivial way. Note that in theorem 2 the definition of R2(x) is identical to that in theorem 1,
so the Riemann zeros and the eigenvalues of matrices in U(N) appear to have exactly the
same non-trivial correlations in the limit of infinite height up the critical line on the one hand,
and infinite matrix size on the other.

The basic idea underlying the method used to prove Montgomery’s theorem is the
following one. Formula (1) expressing ζ(s) as a product over the primes may be used to
relate the zeros tn to sums over the primes. Hence the pair correlation of the zeros may
be written as a sum over pairs of primes p, q . The contribution from the diagonal terms
with p = q may be evaluated using the prime number theorem. The condition on f (x) in
Montgomery’s theorem is designed so that only the diagonal terms contribute. Relaxing the
condition on f would require the evaluation of the off-diagonal terms (p �= q). The details of
these calculations are reviewed in [48].

3. More on the zero statistics

There is substantial evidence in support of Montgomery’s conjecture. Among other statistics,
Odlyzko has computed the two-point correlation function numerically for batches of zeros
high up on the critical line (e.g., near to the 1020th zero) and his results [59] show striking
agreement with R2(x) (given in theorem 1), as illustrated by figure 1.

Odlyzko’s computations show a similarly convincing agreement for the distribution of
spacings between adjacent unfolded Riemann zeros and the equivalent random matrix statistic
[59]. This nearest-neighbour distribution depends on all of the n-point correlation functions
and so suggests that Montgomery’s conjecture generalizes to relate correlations between
n-tuples of zeros and the corresponding correlations between n-tuples of eigenphases.
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Figure 1. The two-point correlation function of 106 Riemann zeros around the height of the 1020th
zero (dots) and the two-point correlation function R2(x) (smooth curve), see theorem 2, of the
eigenvalues of matrices in U(N) in the large-N limit (figure courtesy of A M Odlyzko).

That theorem 1 also generalizes was proved by Hejhal for the three-point correlation function
[37], and by Rudnick and Sarnak [61] for all the n-point correlations, as we will now explain.

Rudnick and Sarnak define an n-point correlation sum as follows. For a set BN of N
unfolded Riemann zeros w1 � w2 � · · · � wN and for a test function f which satisfies

f (x) ≡ f (x1, . . . , xn) is symmetric (13a)

f (x + t (1, . . . , 1)) = f (x) for t ∈ R (i.e. f (x) is a function of successive

differences of the x) and (13b)

f (x) → 0 rapidly as |x| → ∞ in the hyperplane
∑

j

xj = 0 (13c)

define

Rn,ζ (BN, f ) = n!

N

∑
S⊂BN|S|=n

f (S). (14)

On the random matrix side, the n-point correlation function of the eigenphases of matrices
from U(N) is defined as

Rn(θ1, . . . , θn; N) = N!

(N − n)!

∫ 2π

0
· · ·

∫ 2π

0
P(θ1, · · · θN) dθn+1 · · · dθN (15)

where the joint probability density function of the eigenphases (derived from Haar measure)
is given by

P(θ1, . . . , θN) = 1

N!(2π)N

∏
1�m<n�N

|eiθn−eiθm |2 (16)

that is, P(θ1, . . . , θN) dθ1 · · · dθN is the probability that a matrix plucked from this ensemble
has eigenphases between θ1 and θ1 + dθ1, between θ2 and θ2 + dθ2, and so on. These n-point
correlation functions were evaluated by Dyson [30] and are given by

Rn(θ1, . . . , θn; N) = det[KN(θj − θk)]j,k=1,...,n (17)
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where

KN(θ) = 1

2π

sin(Nθ/2)

sin(θ/2)
. (18)

In the large-N limit, then, the n-point correlation function of the unfolded eigenphases is

Rn(φ1, . . . , φn) = det[K(φj − φk)]j,k=1,...,n (19)

with K(x) = sin πx
πx

.
With these definitions, we have the theorem

Theorem 3 (Rudnick and Sarnak [61]). Let the test function f satisfy conditions (13), and
in addition assume that f̂ (ξ) is supported in

∑
j |ξj | < 2. Further, assume the Riemann

hypothesis to be true. Then as N → ∞,

Rn,ζ (BN, f ) →
∫

Rn

f (x)Rn(x)δ
(x1 + · · · + xn

n

)
dx1 · · · dxn.

In the above theorem Rudnick and Sarnak make use of the assumption that the Riemann
hypothesis is true, but in [61] they define a smoothed version of the n-point correlation function
and with this prove a similar result to theorem 3 without it being necessary for the Riemann
zeros to lie on the critical line. It is also important to note that Rudnick and Sarnak proved
theorem 3 not only for the zeros of the Riemann zeta function, but also for a whole class of
other L-functions, as will be discussed in the following section.

The methods used in proving theorem 3 are essentially a direct generalization of those
underlying theorem 1, described in outline at the end of section 2; that is, the result follows
from an evaluation of the diagonal contributions to multiple sums over the primes.

In theorem 3 as in the case of the two-point correlation function (theorem 1), there is a
restriction imposed on the support of the test function f (x). No statistics of the Riemann zeros
have been proved to agree with random matrix results outside of this range of correlation. To
do so requires an evaluation of the off-diagonal contributions to multiple sums over the primes.
However, there is a heuristic calculation of Bogomolny and Keating [13, 15] which shows the
n-point correlation function to be, high on the critical line, exactly the same as that predicted
by random matrix theory, without any restrictions on the correlation range. Their method
uses a conjecture by Hardy and Littlewood on the correlations between primes to evaluate the
off-diagonal contributions needed. (See [48] for a review of the basic ideas in the case of the
two-point correlation function.)

There have recently been other studies of the statistical distribution of the zeros of the
Riemann zeta function. For example, the idea introduced in [52] that statistical properties of
the zeta function at a finite height up the critical line might be modelled by finite-size random
matrices, with height and size related by N ∼ log t , which will be discussed in later sections,
has been verified in a systematic study of the fluctuations in the number of unfolded zeros
lying in ranges of a given length (see the contribution by Coram and Diaconis [27] to this
issue).

The conclusion to be drawn is that the statistical distribution of the Riemann zeros, in the
limit as one looks infinitely high up the critical line, coincides with the statistical distribution
of the eigenvalues of random unitary matrices, in the limit of large matrix size. (We note
as well that a great deal is also known about the way in which zero statistics approach the
large-height limit described by random matrix theory—see, for example, [8, 14, 49]. Results
concerning the approach to this limit were reviewed recently by Berry and Keating in [11].)
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4. Families of L-functions

As mentioned in the introduction, the connection between the Riemann zeros and random
matrix theory is merely one example of a much more general relationship. The results of
Rudnick and Sarnak hold not just for the Riemann zeta function but for other individual
L-functions, as we will now discuss. Moreover, Katz and Sarnak [45, 46] have proposed
a fundamental generalization—in terms of families of similar L-functions with each family
subscribing to a symmetry type, not just the familiar unitary symmetry of U(N), but also the
symmetry corresponding to O(N) and USp(2N).

We will consider first the basic properties of L-functions, and then give a simple example
of a family by way of illustration, before discussing further the results of Katz and Sarnak.

L-functions share the same general structure as the Riemann zeta function in that there
exists for each a Dirichlet series and an Euler product over the primes p like those in (1), for
example

L(s) =
∞∑

n=1

an

ns
=

∏
p

( ∞∑
k=0

apk

pks

)
. (20)

The coefficients an might be Dirichlet characters or Fourier coefficients of an automorphic
cusp form. Whatever the source of the various L-functions, they have in common an analytic
continuation beyond the region in which the series converges, and a functional equation
which relates the L-function in one half of the complex plane with the other half. We will
always consider L-functions to be normalized so that the line of symmetry is Re s = 1/2.
The generalized Riemann hypothesis then proposes that all the non-trivial zeros of a given
L-function lie on this critical line. Theorem 3 of Rudnick and Sarnak applies equally well to
any primitive L-function (one which does not factor into a product of L-functions) providing
that the condition∑

p

|apk log p|2
pk

< ∞ (21)

holds for any k � 2, where the sum is over the prime numbers (this clearly holds in the case of
the Riemann zeta function). This suggests that for any individual L-function, the distribution
of its zeros high on the critical line will display the same characteristics as the distribution
of the eigenvalues of matrices pulled at random from U(N) (uniformly with respect to Haar
measure) for large N.

Now we turn to families of L-functions. Take, for example, an L-function with coefficients
determined by a real Dirichlet character:

L(s, χd) =
∞∑

n=1

χd(n)

ns
=

∏
p

[1 − χd(p)p−s ]−1 (22)

where χd(n) = (
d
n

)
is Kronecker’s extension of Legendre’s symbol which is defined for p

prime,

(
d

p

)
=




+1 if p � d and x2 ≡ d (mod p) is soluble
0 if p | d

−1 if p � d and x2 ≡ d (mod p) is not soluble.
(23)

The character χd exists for all fundamental discriminants d, and the L-functions attached
to these characters are said to form a family as we vary d. The family can be partially
ordered by the conductor |d|. Katz and Sarnak noted that U(N) and the other circular
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Table 1. Symmetric spaces G(N), from [46].

Symmetry type G Realization of G(N) as matrices

U, also called CUE U(N), the compact group of N × N unitary matrices
SO (even) SO(2N), the compact group of 2N × 2N unitary matrices A satisfying

AtA = I, det A = 1
SO (odd) SO(2N + 1), the compact group of (2N + 1) × (2N + 1) unitary

matrices A satisfying AtA = I, det A = 1
Sp USp(2N), the compact group of 2N × 2N unitary matrices A

satisfying AtJA = J , J =
[

0 IN

−IN 0

]
COE U(N)/O(N), symmetric unitary N × N matrices identified with the

above cosets via B → BtB

CSE U(2N)/USp(2N), 2N × 2N unitary matrices satisfying J tH tJ = H

identified by B → BJBtJ t

matrix ensembles which are standard, as mentioned in the introduction, in physics, COE =
U(N)/O(N) and CSE = U(2N)/USp(2N), are only three of the dozen or so symmetric
spaces characterized by Cartan. Amongst the others are the compact groups USp(2N) and
O(N). In the context of physical systems, these other symmetric spaces were realized to be
of importance independently by Altland and Zirnbauer [1]. From Katz and Sarnak we borrow
table 1 of the symmetric spaces which are important here.

Following the notation of Katz and Sarnak, we let G(N) stand for any of the ensembles in
table 1. Since A ∈ G(N) is a unitary matrix, we write the eigenvalues as eiθ1(A), . . . , eiθN (A),
and label them so that 0 � θ1(A) � · · · � θN(A) < 2π . The measure, denoted dA, on the
compact groups is always Haar measure, and for the circular ensembles we use the volume
form as the probability measure.

Amongst other local statistics, Katz and Sarnak define the kth consecutive spacings

µk(A)[a, b] = #
{
1 � j � N

∣∣ N
2π

(θj+k − θj ) ∈ [a, b]
}

N
(24)

and show that for fixed k � 1, the same limit

lim
N→∞

∫
G(N)

µk(A) dA = µk(CUE) (25)

exists irrespective of how G(N) is chosen from among the first four ensembles in table 1.
(Katz and Sarnak write µk(GUE), but since the local statistics of the ensemble of Hermitian
matrices, GUE, and the CUE ensemble of unitary matrices are the same in the limit N → ∞,
either notation is suitable.) Further, Katz and Sarnak show that for a typical (in measure)
A ∈ G(N) the statistic µk(A) approaches µk(CUE) as N → ∞. The same type of result
is established also for the n-point correlations of the eigenvalues, and thus the local statistics
of the entire set of N (or 2N) eigenvalues of matrices from any of the four compact groups
mentioned above tend to the same limit as N becomes large.

In contrast to this, Katz and Sarnak showed that the statistics of only the first eigenvalue
(or more generally the first few eigenvalues) are specific to the particular ensemble chosen. If
we define the distribution of the kth eigenvalue of a matrix A varying over G(N),

νk(G(N))[a, b] = meas

{
A ∈ G(N) :

θk(A)N

2π
∈ [a, b]

}
(26)
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then Katz and Sarnak show that the limit

lim
N→∞

νk(G(N)) = νk(G) (27)

exists, but in contrast to (25), the limit depends on the ensemble G.
Based on this, Katz and Sarnak proposed that while the high zeros of any one L-function

will always show the typical statistics of U(N) (otherwise known as the CUE) the statistics
of the lowest zeros near to s = 1/2 will show, when their distribution is determined over a
suitable family of L-functions, the statistics of U(N), O(N) or USp(2N).

To be more explicit, if we assume the Riemann hypothesis for the L-functions we are
considering, then we write the zeros as 1/2 + iγ (n) and order them

· · · � γ (−2) � γ (−1) � 0 � γ (1) � γ (2) � · · · . (28)

IfF denotes a family of L-functions,and an individual L-function within the family is identified
by f and has conductor cf , the zeros near s = 1/2 are normalized to have unit mean spacing
by scaling them in the following way:

γ
j

f log cf

2π
. (29)

Let FX denote the members of the family F with conductor less than X. Then Katz and Sarnak
define the distribution of the j th eigenvalue as

νj (X,F)[a, b] = #
{
f ∈ FX :

γ
(j)
f log cf

2π
∈ [a, b]

}
#FX

. (30)

It is then expected, and Katz and Sarnak provide analytical and numerical evidence for this,
that νj (X,F) will converge, as X grows large, to νj (G(N)), where G(N) represents the
symmetry type of the family: U(N), O(N) or USp(2N). Similarly, any other statistics of the
lowest zeros would also be expected, upon averaging over the family, to tend to the random
matrix statistics of the correct symmetry type in the same limit as above.

For example, in the case of the family of L-functions with real Dirichlet characters
described at (22), the low-lying zeros appear to show symplectic symmetry. In figure 2, taken
from [60], we see for j = 1 and j = 2 the good agreement between the numerically calculated
distribution of the j th zero above s = 1/2 on the critical line and the distribution of the j th
eigenvalue of the group USp(2N). These distributions are visibly different from those of the
lowest eigenvalues of matrices from U(N) where there is no repulsion of the first zero by
θ = 0.

The question of determining the symmetry type of a given family a priori is in general a
difficult one. The method used by Katz and Sarnak is that for some families of L-functions,
a related family of zeta functions on finite fields can be defined. In the case of these zeta
functions the definition of families is straightforward, the Riemann hypothesis has been proved
(in that all zeros lie on a circle) and the symmetry type is determined by the monodromy of
the family (see [45]). The symmetry type of the related family of L-functions is then assumed
to be the same. We return to this problem of determining the symmetry type of families in a
later section.

Further studies of the statistics of low-lying zeros of Dirichlet L-functions have recently
been carried out by Hughes and Rudnick [41], who compared the moments of linear statistics
of scaled zeros around the symmetry point s = 1

2 with similar moments of statistics of
eigenphases near the point 1. In both cases they found comparable mock-Gaussian behaviour.

The idea of relating zero statistics for L-functions to averages over the classical compact
groups has been extended by Keating et al [50] to the exceptional Lie groups. Specifically, they
construct a family of L-functions associated with a finite field in which the relevant average is
over the exceptional group G2.
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1st zero above 0 for L(s,chi_d),
10E12 < |d| < 10E12+200000, 7243 d’s,
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Figure 2. The numerically computed histogram of the distribution over d of the height of the first
zero above s = 1

2 of L(s, χd ) (left) versus ν1(Sp) and the distribution of the height of the second

zero above s = 1
2 versus ν2(Sp) (right). Figure courtesy of Rubinstein [60].

5. Random matrices and log ζ(1/2 + it)

In the preceding sections, we have described the overwhelming evidence for a connection
between the statistics of the zeros of L-functions and the eigenvalues of ensembles of matrices.
The next step is to see what use can be made of that connection. Since the value distribution
of a function is, to some extent, determined by its zeros, in this section and the following one
we will describe how the value distributions of L-functions and of logarithms of L-functions
can be probed using random matrix theory. We start with the logarithm.

At a given height t up the critical line, log ζ(1/2 + it) is a complex number, and one might
ask: how are the real and imaginary parts of it distributed as t varies? In the limit as t → ∞,
the answer to this question is provided by a beautiful theorem due to Selberg [59, 63]:

Theorem 4 (Selberg). For any rectangle B ∈ C,

lim
T →∞

1

T

∣∣∣∣∣∣

t : T � t � 2T ,

log ζ(1/2 + it)√
1
2 log log T

∈ B



∣∣∣∣∣∣ = 1

2π

∫ ∫
B

e−(x2+y2)/2 dx dy.

That is, in the limit as T, the height up the critical line, tends to infinity, the value distributions
of the real and imaginary parts of log ζ(1/2 + iT )/

√
(1/2) log log T each tend, independently,

to a Gaussian with unit variance and zero mean. Crucially for us, Odlyzko’s computations for
these distributions when T ≈ t1020 show significant systematic deviations from this limiting
form [59]. For example, increasing moments of both the real and imaginary parts diverge
markedly from the Gaussian values. There is, of course, no contradiction; this merely suggests
that the limiting Gaussian distribution is approached rather slowly as T → ∞. It does, though,
lead to the question of how to model the statistical properties of log ζ(1/2 + it) when t is large
but finite.

Given its success in describing other statistical properties of the zeta function, it is natural
ask whether random matrix theory might be used as the basis of such a model. The question
is, then: what property of a matrix plays the role of the zeta function? The answer is simple:
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since the zeros of the zeta function are distributed like the eigenvalues of a random unitary
matrix, the zeta function might be expected to be similar, in respect of its value distribution, to
the function whose zeros are the eigenvalues, that is, to the characteristic polynomial of such
a matrix. This idea was introduced and investigated in detail in [52]. Here we give details of
some main results.

The characteristic polynomial of a unitary matrix A may be defined by

�(z) ≡ �A(z) = det(I − Az). (31)

The moment generating function for Re log �(eiθ ), for example, is thus

MU(s; N) =
∫

U(N)

exp(s Re log �A(eiθ )) dA =
∫

U(N)

|�A(eiθ )|s dA (32)

where the integration is, as before, with respect to Haar measure. Obviously �A may be
written in terms of the eigenangles of A:

�A(eiθ ) =
N∏

n=1

(1 − ei(θn+θ)). (33)

Haar measure on U(N) may also be expressed in terms of these eigenangles [64], allowing
one to write∫

U(N)

|�A(eiθ )|s dA = 1

(2π)NN!

∫ 2π

0
· · ·

∫ 2π

0

∏
1�j<m�N

|eiθj − eiθm |2

×
∣∣∣∣∣

N∏
n=1

(1 − ei(θn+θ))

∣∣∣∣∣
s

dθ1 · · · dθN. (34)

This N-dimensional integral may then be computed by relating it to an integral evaluated by
Selberg [54], giving

MU(s; N) =
N∏

j=1

�(j)�(j + s)

(�(j + s/2))2
. (35)

All information about the value distribution of Re log � on the unit circle is contained
within (35): moments may be computed in terms of the derivatives of MU(s; N) at s = 0,
and the value distribution itself is the Fourier transform of MU(iy; N). In the same way,
information about the value distribution of Im log �, and the joint value distribution of the
real and imaginary parts of log � may be computed. This leads to a central limit theorem for
log � (see also [3, 28]):

Theorem 5 (Keating and Snaith [52]).

lim
N→∞

meas


A ∈ U(N) :

log �√
1
2 log N

∈ B


 = 1

2π

∫ ∫
B

e− 1
2 (x2+y2) dx dy

for rectangles B ∈ C.

This theorem corresponds precisely to Selberg’s for the value distribution of
log ζ(1/2 + it), suggesting that random matrix theory, in the limit as the matrix size tends
to infinity, can indeed model the value distribution of log ζ(1/2 + it) as t → ∞. The question
that remains is whether it can also model the approach to the limit, that is, the value distribution
when t is large but finite.
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Figure 3. The value distribution for Re log � with respect to matrices taken from U(42), Odlyzko’s
data for the value distribution of Re log ζ(1/2 + it) near the 1020th zero (taken from [59]), and the
standard Gaussian, all scaled to have unit variance (taken from [52]).

In order to relate the large-t asymptotics for the zeta function to the large-N asymptotics
for the characteristic polynomials we need a connection between t and N. Note that the scaling
in theorem 4 and that in theorem 5 coincide if we set

N = log
t

2π
. (36)

Such an identification is natural, because it corresponds to equating the mean density of the
Riemann zeros at height t to the mean density of eigenphases for N × N unitary matrices, and
these are the only parameters that appear in the connection between the respective statistics
(cf (3) and (9)). This, therefore, prompts the question as to whether the rate of approach
to Selberg’s theorem as t → ∞ is related to that for theorem 5 as N → ∞ (which can be
computed straightforwardly using (35)) if we make the identification (36).

As already noted above, Odlyzko’s numerical computations of the value distribution of the
zeta function near to the 1020th zero show significant deviations from the Gaussian limit given
in theorem 4. The integer closest to log(t1020/2π) is N = 42 (t1020 ≈ 1.5202 × 1019), so in
figure 3 we plot the value distribution for Re log ζ(1/2 + it), scaled as in theorem 4, computed
by Odlyzko [59], together with the value distribution for Re log �, scaled as in theorem 5,
with respect to matrices taken from U(42). Also shown is the Gaussian with zero mean and
unit variance which represents the limit distribution in both cases (as t → ∞ and N → ∞
respectively). The negative logarithm of these curves is plotted in figure 4, highlighting the
behaviour in the tails. In order to quantify the data, the moments of the three distributions are
listed in table 2.

It is clear that random matrix theory provides an accurate description of the value
distribution of Re log ζ(1/2 + it). It also models Im log ζ(1/2 + it) equally well [52].
This then suggests that, statistically, the zeta function at a large height t up the critical
line behaves like a polynomial of degree N, where t and N are related by (36); and,
moreover, that the polynomial in question is the characteristic polynomial of a random unitary
matrix.

Of course, specific properties of the zeta function would be expected to appear in the
description of its value distribution. The point is that these contribute at lower order in the
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Figure 4. Minus the logarithm of the value distributions plotted in figure 3 (taken from [52]).

Table 2. Moments of Re log ζ(1/2 + it), calculated by Odlyzko over two ranges (labelled a and b)
near the 1020th zero (t 	 1.520×1019) (taken from [59]), compared with the moments of Re log �

for U(42) and the Gaussian (normal) moments, all scaled to have unit variance.

Moment ζ (a) ζ (b) U(42) Normal

1 0.0 0.0 0.0 0
2 1.0 1.0 1.0 1
3 −0.53625 −0.55069 −0.56544 0
4 3.9233 3.9647 3.89354 3
5 −7.6238 −7.8839 −7.76965 0
6 38.434 39.393 38.0233 15
7 −144.78 −148.77 −145.043 0
8 758.57 765.54 758.036 105
9 −4002.5 −3934.7 −4086.92 0

10 24060.5 22722.9 25347.77 945

asymptotics, with the leading order being given by random matrix theory. For example, it is
shown in [52] that as N → ∞∫

U(N)

(Im log �A)2 dA = 1

2
log N +

1

2
(γ + 1) + o(1) (37)

where γ is Euler’s constant, while Goldston [34] has proved, under the assumption of the
Riemann hypothesis and Montgomery’s conjecture, that as T → ∞
1

T

∫ T

0
(Im log ζ(1/2 + it))2 dt = 1

2
log log

T

2π
+

1

2
(γ + 1) +

∞∑
m=2

∑
p

(1 − m)

m2

1

pm
+ o(1).

(38)

These expressions coincide under the identification (36), except for the sum over primes in
(38). Obviously the primes have their origin in number theory, rather than random matrix
theory.

In determining the value distribution of log �A(eiθ ) (e.g., as in theorem 5), the averages
were performed over matrices A taken uniformly with respect to Haar measure on the unitary
group U(N). It is natural to ask how close this average is to an average with respect to θ when
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A is fixed; that is, about ergodicity. It was proved in [40] that indeed the average is ergodic,
in the sense that in the limit as N → ∞, the average over θ equals that over A for all but a set
of matrices of zero measure.

As has been described above, the scaling of log �A with respect to 1
2 log N leads to a

central limit theorem. What about different scalings, characterizing, for example, the large
deviations of log �A? These were also computed in [40], and shown to agree with numerical
calculations (e.g., the behaviour seen in the tails in figure 4) and other results known to hold
for the zeta function.

6. Random matrices and moments of L-functions

Determining the value distribution of an L-function is, it turns out, a significantly harder
problem than determining the value distribution of its logarithm. Selberg’s theorem completely
characterizes the limiting distribution of log ζ(1/2 + it), while for ζ(1/2 + it) almost nothing
is known.

Regarding the moments of |ζ(1/2 + it)|, there is a long-standing and important conjecture
that f (λ), defined by

lim
T →∞

1

logλ2
T

1

T

∫ T

0
|ζ(1/2 + it)|2λ dt = f (λ)a(λ), (39)

where

a(λ) =
∏
p

{
(1 − 1/p)λ

2

( ∞∑
m=0

(
�(λ + m)

m!�(λ)

)2

p−m

)}
, (40)

exists, and a much-studied problem then to determine the values it takes, in particular for
integer λ (see, for example, [43, 63]). Obviously f (0) = 1. In 1918, Hardy and Littlewood
proved that f (1) = 1 [36], and in 1926 Ingham proved that f (2) = 1/12 [42]. No other values
are known. Based on number-theoretical arguments, Conrey and Ghosh have conjectured that
f (3) = 42/9! [24], and Conrey and Gonek that f (4) = 24 024/16! [25].

Given the success of random matrix theory in describing the value distribution of
log ζ(1/2 + it), it is natural to ask whether it has anything to contribute on this issue. Invoking
the identification (36), the question for the characteristic polynomials that is analogous to (39)
is whether

fU(λ) = lim
N→∞

1

Nλ2

∫
U(N)

|�A(eiθ )|2λ dA (41)

exists, and, if it does, what values it takes. The answer to this question was given in [52],
where the following theorem is proved.

Theorem 6 (Keating and Snaith [52]). The coefficient fU , defined as in (41), exists and is
given by

fU(λ) = G2(1 + λ)

G(1 + 2λ)

where G denotes the Barnes G-function [5]. Hence fCUE(0) = 1 (trivial) and

fU(k) =
k−1∏
j=0

j !

(j + k)!

for integers k � 1.
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Thus, for example, fU (1) = 1, fU (2) = 1/12, fU(3) = 42/9! and fU (4) = 24 024/16!. The
fact that these values coincide with those associated, or believe to be associated, with the zeta
function strongly suggests that

Conjecture 2 (Keating and Snaith [52]). With f (λ) and fU (λ) defined as in (39) and (41),
respectively,

f (λ) = fU(λ)

for all Re λ > −1/2.

This conjecture is also supported by Odlyzko’s numerical data for non-integer values of λ

between zero and two [52].
All that has been said so far on the moments of the Riemann zeta function deals only with

the leading order coefficient, which survives the limit in (39). In recent work of Conrey et al
[23], however, conjectures arrived at through heuristic number theoretic arguments produce
in a concise form all the significant lower-order terms, and are remarkably similar to the
corresponding results for random matrix characteristic polynomials. Specifically, the 2kth
moment of the zeta function and the 2kth moment of �A are polynomials of degree k2. In the
random matrix case, this polynomial can be written down explicitly using (35). In the zeta
function case, we do not know the analogue of (35). The coefficients in the polynomial can
instead be computed from the expression conjectured below. We show then that (35) can be
written in a form that is analogous to this expression. The expressions in question are written
in terms of contour integrals (in the manner suggested by [19]) and involve the Vandermonde:

�(z1, . . . , zm) =
∏

1�i<j�m

(zj − zi). (42)

Conjecture 3 (Conrey et al [23]).∫ T

0
ζ

(
1

2
+ it + α1

)
· · · ζ

(
1

2
+ it + αk

)
ζ

(
1

2
− it − αk+1

)
· · · ζ

(
1

2
− it − α2k

)
dt

=
∫ T

0
Wk

(
log

t

2π
; α1, . . . , αk; αk+1, . . . , α2k

) (
1 + O

(
t−

1
2 +ε

))
dt

where

Wk(x; α1, . . . , αk; αk+1, . . . , α2k) = e
x
2 (−α1−α2−···−αk+αk+1+···+α2k)

(−1)k

k!2(2π i)2k

×
∮

· · ·
∮

e
x
2

∑k
j=1 zj −zj+k

G(z1, . . . , z2k)�
2(z1, . . . , z2k)∏2k

i=1

∏2k
j=1(zi − αj )

dz1 . . . dz2k

with the path of integration being small circles surrounding the poles αi . Here

G(z1, . . . , z2k) = Ak(z1, . . . , z2k)

k∏
i=1

k∏
j=1

ζ(1 + zi − zj+k)

and Ak is the Euler product

Ak(z) =
∏
p

k∏
i=1

k∏
j=1

(
1 − 1

p1+zi−zj+k

)∫ 1

0

k∏
j=1

(
1 − e(θ)

p1/2+zj

)−1 (
1 − e(−θ)

p1/2−zj+k

)−1

dθ

with e(θ) = exp(2π iθ).

This is to be compared with the following theorem in random matrix theory:
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Theorem 7 (Conrey et al [22]).

Wk(U(N); α1, . . . , α2k) =
∫

U(N)

�A(e−α1) · · ·�A(e−αk )�A†(eαk+1) · · ·�A† (eα2k ) dA

= e
N
2 (−α1−α2−···−αk+αk+1+···α2k)

(−1)k

(2π i)2kk!2

∮
· · ·

∮
e

N
2

∑k
j=1 zj−zj+k

×
∏

1���k
k+1�q�2k

(1 − ezq−z� )−1 �2(z1, . . . , z2k)∏2k
i=1

∏2k
j=1(zi − αj )

dz1 · · · dz2k.

The autocorrelation function in theorem 7 is defined so as to be comparable with that
in conjecture 3, since in the case that αi is purely imaginary, e∓αi sits on the unit circle,
in analogy with 1/2 + it ± αi lying on the critical line when αi is purely imaginary in the
Riemann zeta version. With these definitions the structures of Wk(U(N); α1, . . . , α2k) and
Wk(x; α1, . . . , α2k) are identical if

∏k
�=1

∏k
m=1(1−ezm+k−z� )−1 plays the role of G(z1, . . . , z2k):

crucially, these functions have poles in the same places. G(z1, . . . , z2k), however, contains
arithmetic information about the zeta function which clearly cannot be predicted by
random matrix theory. The multiple integral expressions for Wk(U(N); α1, . . . , α2k) and
Wk(x; α1, . . . , α2k) resemble those obtained by Brézin and Hikami [19] for the autocorrelation
functions of the characteristic polynomials of Hermitian matrices in the limit of large
matrix size N. In addition, expressions which are exact for finite N have been derived—
by Mehta and Normand [55] in the case of moments and (in this issue) Fyodorov and
Strahov [32] for autocorrelation functions—forquantities involving characteristic polynomials
of matrices from Hermitian ensembles. For the ensembles of unitary matrices, autocorrelations
of characteristic polynomials have been calculated independently, using Lie theory, by
Nonnenmacher and Zirnbauer [58].

That Wk(x; 0, 0, . . . , 0) is actually a polynomial of degree k2 can be seen by considering
the order of the pole at zj = 0. From the numerator of the integrand we extract the coefficient
of

∏
z2k−1
i , a polynomial of degree 2k(2k − 1). The Vandermonde determinant squared

is a homogeneous polynomial of degree 2k(2k − 1). However, the poles coming from the
ζ(1 + zi − zj+k) cancel k2 of the Vandermonde factors. This requires us, in computing the
residue, to take, in the Taylor expansion of exp

(
x
2

∑k
1 zj − zj+k

)
, terms up to degree k2.

The fact that Wk

(
log t

2π
; 0, 0, . . . , 0

)
is a polynomial in log t

2π
of degree k2 corresponds

nicely to Wk(U(N); 0, . . . , 0) = ∫
U(N)

|�A(1)|2k dA, which is a polynomial of degree k2 in
N, as can be seen from (35). As was already mentioned, equating the density of the Riemann
zeros at height t with the density of the random matrix eigenvalues yields the equivalence
N = log t

2π
. After some manipulation, one can see that ak in (40) equals Ak(0, . . . , 0) and

so the leading term of the integral expression in conjecture 3 for Wk(x; 0, . . . , 0) coincides
precisely with the leading term conjectured by Keating and Snaith described above. The
expression in conjecture 3 has recently been shown to be connected with the analytic properties
of multiple Dirichlet series [29].

Thus it appears that random matrix theory,specifically results concerning the characteristic
polynomials of random unitary matrices, leads to a conjectural solution, supported by all
available evidence, to the long-standing problem of calculating the moments of the Riemann
zeta function on its critical line. In a similar way, the ideas of Katz and Sarnak, detailed in
section 4, suggest that averages over families of L-functions of the value at the symmetry
point s = 1/2 should be predicted by matrix ensemble averages over U(N), O(2N) or
USp(2N) (depending on the symmetry type of the family of L-functions) of the characteristic
polynomial evaluated at the point 1 (the symmetry point of the eigenvalues). The results of
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Conrey and Farmer [21] and Keating and Snaith [51] show that the evidence that the leading
order coefficient of such mean values splits into a product of a random matrix coefficient
(calculated in the same way as fU (λ), but for the average over the appropriate group) and
a product over primes specific to the family under consideration is as strong as that for the
moments of the Riemann zeta function high on the critical line described earlier in this section.
For example, for the family of L-functions mentioned at (22) the moment is conjectured, for
large D, to be

Conjecture 4 (Conrey and Farmer [21], Keating and Snaith [51]).

π2

6D

∑
|d|�D

∗
L(1/2, χd)

k ∼ f (k)a(k)

(
1

2
log D

)k(k+1)/2

where
∑∗ is over fundamental discriminants, χd(n) = (

d
n

)
is the Kronecker symbol, and the

sum is over all real, primitive Dirichlet characters of conductor up to D. Here

a(k) =
∏
p

(
1 − 1

p

) k(k+1)
2

1 + 1
p



(
1 − 1√

p

)−k
+
(
1 + 1√

p

)−k

2
+

1

p




and the coefficient f (k) is

f (k) = lim
N→∞

1

Nk(k+1)/2

∫
USp(2N)

|�A(1)|k dA

= lim
N→∞

1

Nk(k+1)/2
22Nk

N∏
j=1

�(1 + N + j)�
(

1
2 + k + j

)
�
(

1
2 + j

)
�(1 + k + N + j)

.

For integer k, this is

f (k) = 2k(k+1)/2
k∏

j=1

j !

(2j)!
.

This conjecture agrees with previous results for k = 1, 2, 3, and the case of k = 4 is almost
within reach of current methods [33, 44, 62]. A similar conjecture exists for families of
L-functions with orthogonal symmetry.

Further, in [23] the same similarities of structure as we saw in conjecture 3 and
theorem 7 are found between values of L-functions averaged over families and autocorrelations
of random matrix characteristic polynomials. L-functions satisfy the functional equation

L(s) = εXL(s)L(1 − s) (43)

where XL(s) is a �-factor similar to that appearing in (2) which is specific to the L-function.
ε has modulus 1 and appears to provide another method of determining the symmetry type of
a given family. We note that the characteristic polynomial

�A(s) = det(I − As) (44)

of the unitary matrix A satisfies the functional equation

�A(s) = det A(−s)N�A

(
1

s

)
. (45)

Here the transformation s → 1
s

plays the same role relative to the zeros of �(s) on the unit
circle as s → 1 − s plays relative to the zeros of L(s) on the line Re s = 1

2 . Similarly, ε

takes a role analogous to det A. If A is drawn at random from U(N) (with Haar measure) then
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det A can take any complex value with modulus 1. However, as A varies over O(2N), the
determinant can only take the values ±1, and for A in USp(2N) we always have det A = +1.
In analogy to this, it seems that when ε varies over a family of L-functions and takes complex
values with |ε| = 1, then the low-lying zeros of that family display eigenvalue statistics of the
unitary group. If within a family ε takes the value both +1 and −1, then the zeros near s = 1

2
are expected to behave like the eigenvalues of matrices from O(2N), while values ε = 1
throughout the family would imply symplectic symmetry.

It is convenient, however, to define

ZL(s) := ε− 1
2 X

− 1
2

L (s)L(s) (46)

which satisfies the functional equation

ZL(s) = ZL(1 − s) (47)

as well as the analogous characteristic polynomial

ZA(s) = e−iφ/2(−s)−N/2�A(s). (48)

The functional equation

ZA(s) = ZA

(
1

s

)
(49)

is then the precise analogue of (47).
For the family L(1/2, χd) determined by the real Dirichlet characters (see (22)), averages

of ZL over the conductor d < D are conjectured to have the form [23]:

Conjecture 5 (Conrey et al [23]). Suppose g(u) is a suitable weight function. Then, if F is
the family of real Dirichlet L-functions with fundamental discriminants d < 0 we have∑
L∈F

ZL

(
1
2 + α1

) · · · ZL

(
1
2 + αk

)
g(d) =

∑
d<0

∗
Qk

(
α, log

|d|
2π

)
g(|d|)(1 + O

(|d|− 1
2 +ε

))
in which

Qk(α, x) = (−1)k(k−1)/22k

k!

1

(2π i)k

×
∮

· · ·
∮

G−(z1, . . . , zk)�
(
z2

1, . . . , z
2
k

)2 ∏k
j=1 zj∏k

�=1

∏k
j=1(zj − α�)(zj + α�)

e
x
2

∑k
j=1 zj dz1 . . . dzk

(50)

where the path of integration encloses the ±α. Here

G−(z1, . . . , zk) = Ak(z1, . . . , zk)

k∏
j=1

(
�
(

3
4 + zj

2

)
2zj

�
(

3
4 − zj

2

)
) 1

2 ∏
1�i�j�k

ζ(1 + zi + zj )

and Ak is the Euler product, which is absolutely convergent for |zj | < 1/2, for j = 1, . . . , k,
defined by

Ak(z1, . . . , zk) =
∏
p

∏
1�i�j�k

(
1 − 1

p1+zi +zj

)
1

2


 k∏

j=1

(
1 − 1

p
1
2 +zj

)−1

+
k∏

j=1

(
1 +

1

p
1
2 +zj

)−1

 +

1

p


(

1 +
1

p

)−1

.
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There is a similar conjecture for the analogous sum over positive fundamental
discriminants. For this conjecture G− is replaced by G+, where

G+(z1, . . . , zk) = Ak(z1, . . . , zk)

k∏
j=1

(
�
(

1
4 + zj

2

)
2zj

�
(

1
4 − zj

2

)
) 1

2 ∏
1�i�j�k

ζ(1 + zi + zj )

and Ak is as before.

Since the symmetry type of this family is believed to be symplectic, we compare the mean
value above with the following theorem [22]:

Theorem 8 (Conrey et al [22]). We have the following integral over the unitary symplectic
group with Haar measure:∫

USp(2N)

ZA(e−α1) · · ·ZA(e−αk ) dA

= (−1)k(k−1)/22k

k!

1

(2π i)k

∮
· · ·

∮ ∏
1���m�k

(1 − e−zm−z� )−1

× �
(
z2

1, . . . , z
2
k

)2 ∏k
j=1 zj∏k

i=1

∏k
j=1(zj − αi)(zj + αi)

eN
∑k

j=1 zj dz1 · · · dzk

where the contours of integration enclose the ±α.

We note once again that the structure of the multiple integral in theorem 8 is the same as
that in (50), the difference only arising in the replacement of

∏
1���m�k(1 − e−zm−z� )−1 by

G±(z1, . . . , zk); these two alternatives having the same set of poles as a result of the product
over zeta functions in G. Equating the density of the L-function zeros near the point s = 1/2
and the density of the eigenvalues on the unit circle results in the equivalence N = 1

2 log |d|
2π

.
The result in conjecture 5 agrees with the conjecture 4 for the leading order term. Similar
results to theorem 8 and conjecture 5 are presented in [23] for families displaying orthogonal
symmetry. Thus these results on the one hand lend support to the supposition that low-lying
zeros of L-functions in families follow random matrix statistics in the manner proposed by
Katz and Sarnak, while on the other hand illustrate the uses of random matrix theory in
answering difficult number theoretical questions.

Conjecturing the value distribution of L-functions at s = 1/2 via random matrix theory
using the techniques described above ties in to other important questions in number theory;
for instance, for a family associated with elliptic curves, the number of L-functions which
vanish at s = 1/2 is connected to the Birch and Swinnerton-Dyer Conjecture. This number
can be predicted using random matrix theory [26]. The basic idea is that the L-functions in
question form an orthogonal family and so their value distribution at 1

2 can be written down
using the analogue of conjecture 4. It has also been shown that random matrix theory proves
equally successful in the study of the derivative of the Riemann zeta function [38, 39, 56]. It
is unlikely that the uses of random matrix theory in number theory end with the applications
discussed in this review.

7. Final remarks

The obvious question one is left with is: what is the reason for the connection between random
matrices and L-functions? It has long been imagined there might be a spectral interpretation
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of the zeros. If the generalized Riemann hypothesis is true, such an interpretation could be the
reason why; for example, if the zeros tn of ζ(s) are the eigenvalues of a self-adjoint operator,
or the eigenphases of a unitary operator, then automatically they would all be real. Some
speculations along these lines are reviewed in [11], others have been pursued by Connes and
co-workers. If the zeros are indeed related to the eigenvalues of a self-adjoint or unitary
operator, and if that operator behaves ‘typically’, this would then suggest that the zeros might
be distributed like the eigenvalues of random matrices. Alternatively, the success of random
matrix theory in describing properties of the zeta function might be interpreted as evidence in
favour of a spectral interpretation.
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